Optimizing combined tours - The truck-and-cargo-bike case

 Logistics in Operations ResearchPhiline Schiewe, Moritz Stinzendörfer

A!

May 9, 2023

New concepts for last-mile logistics

Truck 0.

+ high capacity
+ fast
- can't use all streets
- high emissions

Bike ort

- low capacity C_{b}
- slower
+ can use bike paths/small streets
+ no emissions

Literature

literature	1st vehicle supplies customers	2nd vehicles per primary vehicle	2nd vehicle type			flexibility	
			2nd vehicle move on network/free	2nd vehicle can be transported	capacity of 2nd vehicle	hand-over location/sync	predefined depot/handover/assignment
[Murray and Chu, 2015]	yes	1	free	yes	1	customer/yes	yes/no/no
[Agatz et al., 2018]	yes	1	free	yes	1	customer/yes	yes/no/no
[Liu et al., 2020]	yes	1	network	yes	≥ 1	customer/yes	yes/no/no
[Amorosi et al., 2021]	no	≥ 1	free	yes	1	anywhere/yes	yes/no/yes
[Anderluh et al., 2017]	yes	≥ 1	network	no	≥ 1	satellite/yes	yes/yes/yes
[Grangier et al., 2016]	no	≥ 1	network	no	≥ 1	satellite/yes	yes/yes/yes
[Nguyen and Hà, 2023]	yes	≥ 1	free	no	≥ 1	depot/no	yes/-/no
[Boysen et al., 2018]	yes	≥ 1	network	yes	1	customer/yes	yes/no/yes
[Contardo et al., 2012]	no	≥ 1	network	no	≥ 1	satellite/no	set/yes/yes
[Nguyen et al., 2012]	no	≥ 1	network	no	≥ 1	satellite/no	yes/yes/yes
[Hemmelmayr et al., 2012]	no	≥ 1	network	no	≥ 1	satellite/no	yes/yes/yes
[Anderluh et al., 2021]	yes	≥ 1	network	no	≥ 1	satellite/yes	yes/yes/yes
[Li et al., 2021]	no	≥ 1	network	no	≥ 1	satellites/yes	yes/yes/yes
[Li et al., 2022]	yes	1	network	yes	≥ 1	customer/yes	yes/no/set
our approach	yes	≥ 1	network	no	≥ 1	customer/yes	yes/no/no

Synchronization

$$
\begin{aligned}
& \mathcal{T}=\left(v_{t}, v_{1}, v_{2}, v_{4}, v_{7}, v_{8}, \ldots\right) \\
& \mathcal{B}=\left(v_{b}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{8}, \ldots\right) \\
& \text { combined nodes: } v_{2}, v_{4}, v_{8}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{c}^{b}(\mathcal{B})= & c_{2}^{b}+\max \left\{c_{3}^{b}+c_{4}^{b}, c_{4}^{t}\right\} \\
& +\max \left\{c_{5}^{b}+c_{6}^{b}+c_{8}^{b}, c_{7}^{t}+c_{8}^{t}\right\}+\ldots \\
\tilde{c}^{t}(\mathcal{T})= & c_{1}^{t}+c_{2}^{t}+\max \left\{c_{3}^{b}+c_{4}^{b}, c_{4}^{t}\right\} \\
& +\max \left\{c_{5}^{b}+c_{6}^{b}+c_{8}^{b}, c_{7}^{t}+c_{8}^{t}\right\}+\ldots
\end{aligned}
$$

Mixed-integer programming formulation

Objectives

name	objective	generalized costs	cost type
(tbc_mdp)	delivery period	$c^{D P}(\mathcal{T}, \mathcal{B}):=\max \left\{\hat{c}^{t}(\mathcal{T}), \hat{c}^{b}(\mathcal{B})\right\}$	synchronized (time-based)
(tbc_mlt)	longest tour	$c^{L T}(\mathcal{T}, \mathcal{B}):=\max \left\{\tilde{c}^{t}(\mathcal{T}), \tilde{c}^{b}(\mathcal{B})\right\}$	synchronized (time-based)
$($ tbc_mst)	summed tour durations	$c^{S T}(\mathcal{T}, \mathcal{B}):=\hat{c}^{t}(\mathcal{T})+\hat{c}^{b}(\mathcal{B})$	synchronized (time-based)
(dbc_ws), total tour length $c^{D B}(\mathcal{T}, \mathcal{B}):=c^{t}(\mathcal{T})+c^{b}(\mathcal{B})$	independent $($ (dbc_os)		(distance-based)

Complexity

Theorem

The combined truck and cargo bike routing problem is

- NP-hard, even if the truck tour is fixed and the bike capacity is two,
- polynomially solvable, if the truck tour is fixed and the bike capacity is one.

Solution approaches

Clustering-based heuristic

- find clusters
- calculate combined tour between clusters
- calculate combined tour in clusters

TSP-based heuristic

- start with two TSP tours containing all nodes
- remove nodes from one tour as long as combined tour stays feasible

Reinforcement learning

- learn Q-functions for truck and bike
- Q-function approximates extra time needed for adding a node to a tour

Comparing heuristics - Artificial data set

Experimental evaluation - Real-world data sets

Wuppertal, Germany

Comparing objectives - Tour duration

Wuppertal, Germany

Münster, Germany

Comparing heuristics - Minimal delivery period

Wuppertal, Germany

Summary and outlook

Summary

- model for combined tours for trucks and cargo bikes
- complexity results
- heuristic solution approaches

Outlook

- exact solution approaches
- cross-sectoral planning with public transport
- approximate value of many secondary vehicles

Optimizing combined tours - The truck-and-cargo-bike case

 Logistics in Operations ResearchPhiline Schiewe, Moritz Stinzendörfer

A!

May 9, 2023

Literature I

- Agatz, N., Bouman, P., and Schmidt, M. (2018).

Optimization approaches for the traveling salesman problem with drone.
Transportation Science, 52(4):965-981.
R Amorosi, L., Puerto, J., and Valverde, C. (2021).
Coordinating drones with mothership vehicles: The mothership and multiple drones routing problem with graphs.
arXiv preprint arXiv:2109.01447.
© Anderluh, A., Hemmelmayr, V. C., and Nolz, P. C. (2017).
Synchronizing vans and cargo bikes in a city distribution network.
Central European Journal of Operations Research, 25(2):345-376.

Literature II

速
Anderluh, A., Nolz, P. C., Hemmelmayr, V. C., and Crainic, T. G. (2021). Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and 'grey zone'customers arising in urban logistics.
European Journal of Operational Research, 289(3):940-958.
Boysen, N., Briskorn, D., Fedtke, S., and Schwerdfeger, S. (2018).
Drone delivery from trucks: Drone scheduling for given truck routes.
Networks, 72(4):506-527.
國 Contardo, C., Hemmelmayr, V., and Crainic, T. G. (2012).
Lower and upper bounds for the two-echelon capacitated location-routing problem. Computers \& operations research, 39(12):3185-3199.

Literature III

(2016). Grangier, P., Gendreau, M., Lehuédé, F., and Rousseau, L.-M. (20.

An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization.
European journal of operational research, 254(1):80-91.
[0] Hemmelmayr, V. C., Cordeau, J.-F., and Crainic, T. G. (2012).
An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics.
Computers \& operations research, 39(12):3215-3228.
固 Li, H., Wang, H., Chen, J., and Bai, M. (2021).
Two-echelon vehicle routing problem with satellite bi-synchronization.
European Journal of Operational Research, 288(3):775-793.

Literature IV

嗇 Li, H., Zhao, J., and Zhan, Z. (2022).
Truck and unmanned vehicle routing problem with time windows: A satellite synchronization perspective.
Journal of Advanced Transportation, 2022.
Rin, Y., Liu, Z., Shi, J., Wu, G., and Pedrycz, W. (2020).
Two-echelon routing problem for parcel delivery by cooperated truck and drone. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(12):7450-7465.

固 Murray, C. C. and Chu, A. G. (2015).
The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery.
Transportation Research Part C: Emerging Technologies, 54:86-109.

Literature V

固
Nguyen, M. A. and Hà, M. H. (2023).
The parallel drone scheduling traveling salesman problem with collective drones. Transportation Science.

固 Nguyen, V.-P., Prins, C., and Prodhon, C. (2012). Solving the two-echelon location routing problem by a grasp reinforced by a learning process and path relinking.
European Journal of Operational Research, 216(1):113-126.

